If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4t^2+40t+3
We move all terms to the left:
0-(-4t^2+40t+3)=0
We add all the numbers together, and all the variables
-(-4t^2+40t+3)=0
We get rid of parentheses
4t^2-40t-3=0
a = 4; b = -40; c = -3;
Δ = b2-4ac
Δ = -402-4·4·(-3)
Δ = 1648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1648}=\sqrt{16*103}=\sqrt{16}*\sqrt{103}=4\sqrt{103}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{103}}{2*4}=\frac{40-4\sqrt{103}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{103}}{2*4}=\frac{40+4\sqrt{103}}{8} $
| 10(c+6~1/5)=-102 | | 6-2(3x-5=-26 | | 6k+18=1+11k-13 | | .36+x+x=3.60 | | -8-2x=-10 | | 8x+4=(2x+1 | | 7*9=(*10)-(7*x) | | (x+5)(2x+4)=0 | | 2k-8=-2+k | | 5r-3+9r+19=-12 | | 36+x+x=360 | | 7*9=(*10)-(7*x | | 00.3x=6 | | 2(v+4)=28 | | -4n-8=10+4n-2 | | u/8=5/10 | | 3n+3/4=2+2n/3 | | 7x+20=5x+60 | | x/4-5=1/6 | | 10+5b=b-10 | | 3x+(3/4)=2+(2x/3) | | ((3)/(4x-8))+((x)/(5))=2 | | 5y-6y=22 | | 450=(2x+25)+3x | | -9z-10+z=-4z+10 | | 13=4(w+10)-w | | (3)/(4x-8)+(x)/(5)=2 | | 9+3r=4+2r | | 9x-6x+168=9x+96 | | 3k^2-6=129 | | x-16=47x | | 3+4h=13 |